
Measuring Complexity by Measuring Structur e and Organization

Gregory S. Hornby

Abstract— Necessaryfor furthering the development of more
powerful evolutionary design systems, capable of scaling to
evolving more sophisticatedand complexartifacts, is the ability
to meaningfully and objectively compare these systems by
applying complexity measures to the artifacts they evolve.
Previously we have proposed measures of modularity , reuse
and hierarchy (MR&H), here we compare these measures to
ones fr om the �elds of Complexity, SystemsEngineering and
Computer Programming. In addition, we proposeseveral ways
of combining the MR&H measures into a single measure of
structure and organization. We compare all of these measures
empirically as well as on thr eesampleobjects and �nd that the
best measuresof complexity are two of the proposedmeasures
of structur e and organization.

I . INTRODUCTION

Over the yearsresearchershave developedmany differ-
ent evolutionary designsystems,some inspired by natural
embryogeniesand somebasedon engineeringand software
development[4], [5]. Necessaryto furtherthescienceof evo-
lutionary designare metricsthat meaningfullycomparethe
complexity of evolved productsof thesedifferent systems.
Ideally, thesemetricsshouldgive someguidanceas to how
to constructbetterevolutionary designsystems,suchas by
measuringthosecharacteristicsthatareneededfor achieving
scalability.

As yet, what little work hasbeendonetoward developing
a theory of complexity and scalability has generallybeen
to proposecharacteristics,or categories, of representations
for evolutionarydesignsystemsbut not well-de�ned metrics
for measuringthem. Angeline classi�es representationsby
whether or not they allow reuse of genotypic elements,
and then whetheror not the evolved generative systemis
local to each individual or sharedacross the population
[1]. Bentley andKumardistinguishbetweenrepresentations
which directly encodean object and then distinguish be-
tweenthosethat indirectly encodean object implicitly, like
cellular automata,or explicitly, like a computer program
[3]. KomosinksiandRotaru-Varga list several characteristics
of representationsfor a creaturedesignproblem,of which
modularity, compressionand redundancy are generalizable
to other design domains [15]. Stanley and Miikkulainen
take � ve attributesof embryogeniesfrom naturalbiology as
their dimensionsfor classifying representations– cell fate,
targeting,heterochrony, canalizationand complexi�cation –
but it is dif�cult to apply theseattributesto representations
that arenot modelsof developmentalbiology [22].

Oneexceptionin which well-de�ned metricsaregiven for
an object's descriptionis from our previous work, in which
we proposedthat modularity, reuseand hierarchy (MR&H)

G. S. Hornby is with U.C. SantaCruz, Mail Stop 269-3,Moffett Field,
CA (hornby@email.arc.nasa.gov).

arethecharacteristicsfor improving scalabilityandin which
we de�ned metrics for measuringthem [12]. In this paper
we compareour metricsof MR&H against several existing
complexity measuresfrom outsidethe �eld of Evolutionary
Computation.Further, weproposeseveralwaysof combining
ourmeasuresof MR&H into asinglemeasureof thestructure
and organizationof an object's encoding.

Our comparisonof metricsconsistsof both an empirical
comparisonaswell asby testingthemetricsonthreedifferent
scenarios.The empirical comparisonconsistsof evolving
designsfor differentsizesof a scalabledesignproblemandis
basedon the assumptionthat as the problemscalesup, the
complexity of evolved designsshould increase.The three
scenariosconsist of examining the complexity scoreson
hypotheticalobjects,which areconstructedin differentways,
andseeinghow intuitive they scorefor them.The resultsof
comparisonshow that the bestmeasuresof complexity are
two of our measuresof structureandorganization.

The rest of this paperis organizedas follows. First, we
describeour model of designrepresentations,since this is
neededto de�ne the metrics operateon them. Second,we
presentour measuresof Modularity, ReuseandHierarchy (in
SectionIII) andtheothermeasureswe comparethemagainst
(in Section IV). Next we describeour experimentalsetup
for comparingthe differentmeasuresin SectionV. Thenwe
presentthe resultsof comparingthe different measureson
differentsizesof a designproblem(SectionVI). We follow
this with our work in developing a metric for measuring
structureand organization by combining the measuresof
modularity, reuseandhierarchy. Finally weclosewith amore
generaldiscussionof whatelseneedsto bemeasuredandour
conclusions.

I I . DESIGN ENCODINGS ARE PROGRAMS

Before de�ning variousmeasuresof artifacts,it is worth
describingtheparadigmunderwhich thesemeasurementsare
being taken. To de�ne metricsof an artifact in a way that
generalizesacrossvarioustypesof artifacts,ratherthantake
measurementsof actualfabricatedartifactswe take measure-
mentson thedatastructuresthatencodetheseartifacts.These
datastructurescanbethoughtof asa forestof tree-structured
objects,in which eachobjectdescribestheassemblyof some
parts,or sub-assemblies,into a larger one(seeFigure1(a)).
Since this data-structurede�nes how the artifact is “built,”
we considerit a programfor building it. Just as computer
programshave procedurecallsanditerative loops,sotoo can
designprogramshave analogousconstructs.If we add links
to thetreesto representthe jumpsfrom theseprocedurecalls
and back to the start of an iterative loop this resultsin this
forest of treesreally being one large, inter-connectedgraph

(a) (b)

Fig. 1. A graphicalrenditionof a designprogramin which differentshapes
representdifferent typesof operators:(a) the tree structuredproceduresin
theprogram;(b) thetree-structuredproceduresin theprogramwith thelinks
addedto show procedurecalls and the extent of iterative loops.

comprisedof multiple sub-graphsfor eachsub-assembly, and
sub-sub-graphsfor the sub-sub-assemblies,and so on (see
Figure1(b)).Thuswhereasthe�elds of ComputationTheory
andComplexity considerprogramsto bestrings(on the tape
usedby a Turing Machine)herewe considerprogramsto be
graphs.

Continuing with the “design encodingis really a design
program”metaphor, thesegraph-structureddesignprograms
can be compiledto producea tree-structuredset of design-
constructingoperatorsin which all the iterative loops have
beenunraveledandall theprocedurecallshavebeenreplaced
with the operatorsinside them. We call this compiled-out
tree-structurethe assemblyprocedurefor constructingthe
design.

In the �eld of Evolutionary Algorithms, the designpro-
gram is the genotype,the actual artifact (or design)is the
phenotype,and the assemblyprocedureis an intermediate
layer betweengenotypeand phenotype.Examplesof types
of design programsare the arti�cial genes in a genetic
regulatorynetwork, the rulesof a cellular automata,andthe
genotypein GeneticProgramming.In theexperimentsin this
paperthe genotypewe are evolving is the designprogram,
andit is compiledinto an assemblyprocedurewhich is then
sent to a design-constructorto createthe phenotype– this
will bedescribedin moredetail in SectionV-B. Someof the
measurespresentedin the following two sectionswill be of
the designprogramand someof them be of the assembly
procedure.

I I I . MEASURING MODULARITY,
REUSE AND HIERARCHY

The methodfor measuringMR&H comesout of what is
meantby theseterms.Modularity is de�ned asan encapsu-
lated group of elementsthat can be manipulatedas a unit,
reuseis a repetitionor similarity in a design,andhierarchy is
thenumberof layersof encapsulatedmodulesin thestructure
of a design.

Eachof MR&H aidsthescalabilityof evolutionarydesign
systemsin differentways.Modularity is relatedto thebuild-
ing block hypothesisof geneticalgorithms(GAs) [9], which

statesthat GAs work by testinggroupsof basiccomponents
andcombiningthemto form highly �t solutions.Simon, in
his parableof two watchmakers, illustratedhow the ability
to createand manipulatemodulesgreatly improves the rate
at which morestructurallysophisticatedartifactscanbebuilt
[20]. For larger and more sophisticatedartifacts,being able
to hierarchicallycreatelevels of nestedmodulesis needed
to break things down so no one module is too large and
sophisticatedto evolve on its own. Beingableto reusedesign
modulesis helpful in two ways.First, a modulethat is useful
in one part of the design may be useful somewhere else
so creatingmodulesis a way of scaling the basic unit of
variation.Second,reuseof a parameter, assemblyor function
is a way of capturing design dependenciesinto a single
location in the designencodingtherebyenablingvariation
operatorsto more easily make coordinatedchangesin the
design.The measuresof MR&H cannow be de�ned.

Modularity : The modularityvalueof a designis a count
of the numberof structuralmodulesin it, which we de�ne
asanencapsulatedgroupof elementsin thedesignencoding
thatcanbemanipulatedasaunit. Sincea labelto aprocedure
can be manipulatedas a unit, eachprocedurein the design
encodingcountsasonetowardtheencodedmodularityvalue.
In addition,theability to changethe iterationcountermeans
that the groupof encodedelementsinsidean iterative block
also constitutea module,henceeachiterative block is one
module in the encoding.As well as counting modulesin
the encodeddesign(which we label Mp, for modulesin the
program)we can also count the numberof occurrencesof
modulesin the designitself, Md. In this caseeachprocedure
call countsas one toward the designmodularity value and
eachiterationof aniterative block addsoneto themodularity
valueof the design.

Reuse: is a measureof the amountof reuseof genotypic
elementsin creatingthe phenotype.It can be calculatedby
countingthe“size” of theobjectanddividing this by thesize
of theencoding.For example,theamountof reusein a string
is the size of the string divided by the size of the program
the generatesthe string. Here we measurethree types of
reuse.The �rst, overall reuse,Ra , is the averageamount
of reuseof a symbol and is calculatedas the size of the
design'sassemblyproceduredividedby thesizeof thedesign
program.Second,reuseof build symbols,Rb, is the average
numberof timesa designconstructingoperator– asopposed
to an operatorthat is a conditional, iterative statementor
procedurecall – is used.Third, reuseof modules,Rm , is the
averagenumberof times modulesare reusedin the design
and is calculatedasMd divided by Mp.

Hierar chy: The hierarchy of an encodeddesign is a
measureof the numberof nestedlayers of modules,such
as throughiteration or abstraction.A designencodingwith
no moduleshas a hierarchy of zero. Each nestedmodule,
whethera successfulcall to a labeledprocedureor a non-
empty iterative block, increasesthe hierarchy valueby one.
This is similar to measuringthedepthof anobject'sassembly
sequence[8], but whereastherethemeasureis of basicsteps

in constructinganobject,herewe aremeasuringmodulesof
basicsteps.

As de�ned, these measuresof MR&H apply to any
programming language,and are thus comparableon the
samesystemsasexisting complexity measures,suchasAIC,
Logical Depth and Sophistication.Thesemeasurescan also
begeneralizedto any representationwith ahierarchicalgraph
structure,suchasthesetof partsusedto describea complex
assemblyin a CAD/CAM package,andany systemthat can
be describedas a hierarchicalgraph structure,such as a
regular expression.Not as obvious is how to apply these
measuresto non-proceduralrepresentationssuchasDNA and
arti�cial geneticregulatorynetworks,for which thechallenge
is mainly the identi�cation of modules.

In therestof this paperwe useMRHto refer to themetrics
for modularity, reuseand hierarchy and MR&H to refer to
the characteristicsof modularity, reuseand hierarchy. Also,
in SectionVII we discusshow to combinethesemeasures
of MRHinto a single measure,which we call a measureof
structure and organization.

IV. COMPLEXITY METRICS

Even thoughthe MRHmetricsweredevelopedspeci�cally
for computer-automateddesignthey may not be any better
for comparingthesophisticationof evolveddesignsassimilar
metrics developed in related �elds. One of the objectives
of this paperis to comparethesemetricsagainst onesthat
alreadyexist. For this comparisonwe selectedthosemetrics
which are relatively straightforward to computeor approx-
imate and which we thought had a reasonablechanceat
beingrelevant.Exampleof someof measureswe left out are:
Arithmetic Complexity, Cognitive Complexity, Dimension
of Attractor, Easeof Decomposition,Logical Complexity,
Mutual Information, Number of Inequivalent Descriptions,
Numberof Statesin a Finite Automata,Numberof Variables,
ThermodynamicDepth,and Variety. (all of thesemeasures,
as well as several others, are reviewed in [7]). We now
presentthe metricswhich we compareMRHagainst.

Algorithmic Inf ormation Content (AIC) is oneof most
well known and in�uential complexity metrics,having been
usedas a startingpoint for many others,and was invented
separatelyby Chaitin [6], Kolmogorov [14], andSolomonoff
[21]. The AIC of a given string is the length, in numberof
symbols,of the shortestprogramthat producesthat string.
For this work we estimatetheAIC by calculatingthenumber
of symbolsin the designprogramsincethis is the evolved
genotypethat de�nes the object.While it is likely that some
of the evolved genotypescould be compressed,using their
sizeis a simpleupperboundon AIC andis a correctmeasure
of thesizeof theprogramthatwasevolved.This measureis
alsoanalogousto countingthenumberof linesin a computer
program,which is onemeasureof its complexity [7].

Designsizeis a measureof thesizeof what is encodedby
the designprogram,and herewe measurethis by counting
the numberof symbols in the assemblyprocedure.In the
�eld of Complexity, in which thereis a string and program

that producesthat string, this measurewould be a count of
the sizeof the string.

Logical Depth is a measureof the value of information
and, for a given string, it is the minimum running time
of a near-incompressibleprogramthat producesthe string
[2]. In this case we use the evolved design program as
the near-incompressibleprogramand calculatethe running
time of this program as the number of symbols that are
processedin generatingthe assemblyprocedure.This can
also be consideredcomputationcomplexity, in that it is a
measureof the amountof computationaltime that is spent
to computethe assemblyprocedure.

Sophistication is a measureof the structureof a string
by counting the numberof control symbols in the design
programusedto generateit [16]. In trying to measurethe
structureof a string, the goal for this measureis similar to
thegoalof MRHmetrics.Herewe calculatethesophistication
of a designby countingthenumberof controlsymbols– that
is, proceduresymbols,loop symbols,conditionals– in the
programthat is usedto generateit.

Number of Build Symbols, whereasSophisticationis
a measureof structureby counting the numberof control
symbols,we proposea countermeasurewhich is a countof
the numberof non-controlsymbols in the designprogram
that is used to generatethe assemblyprocedure.In our
system,thesenon-controlsymbolsarethe operatorsthat are
usedby thedesign-constructinginterpreterandwe call them
build symbols,sincethey areusedto build a 3D shape.

Grammar Size: any string that has a pattern can be
expressedasbeinggeneratedby a grammar. Simplestrings,
with simplepatterns,generallyhave a simplegrammarthus
thesizeof thegrammarneededto produceastringservesasa
measureof complexity [7]. Sincetherepresentationusedhere
is basedon parametricLindenmayersystems[18], (although
it is morelikeGeneticProgramming[17]) theprocedurescan
be thoughtof as grammarrules. To calculatethe grammar
size of an assemblyprocedurewe use the designprogram
that producesit as the grammarand count the numberof
production-rulesin it.

Connectivity : more complex systemshave greaterinter-
connectednessbetweencomponents,thustheconnectivity of
a systemcan be usedas a complexity measure[7]. For a
graph-structure,its connectivity is the maximumnumberof
edgesthat can be removed before it is split into two non-
connectedgraphs.To calculatethe connectivity of a design
we usethe connectivity of the designprogramthat is used
to generateit, sincethis programhasa graph-structureto it.

Number of Branches: inspiredby the previous measure
of complexity, anothermeasureof thestructureof a graphis
a countof numberof nodeswhich arebranchnodes– nodes
which have two or morechildren.Stringshave a very simple
structurewith no branchingnodes,whereasa fully balanced
binary tree will have roughly lg(n) branchnodes.For this
measurewe count the numberof branchesin the assembly
procedureproducedby the designprogram.

Height: is the maximum number of edgesthat can be

traversedin going from the root of the tree to a leaf node.
Unlike othercomplexity metrics,which arebasedon strings,
this measureis for trees and here we apply this measure
to the assemblyprocedurethat is generatedby the design
program.This measureof complexity is relatedto work in
formal languagetheory in which ideasfor measuringease
of comprehensionare to measurethe depth of postponed
symbols[23] or depthand nesting,called SyntacticDepth,
[19].

V. EXPERIMENTAL SETUP

To comparemetricsweuseanexistingevolutionarydesign
systemon a previously usedbenchmarkproblem.The evo-
lutionary designsystemwe useis GENRE,and this system
allows the user to selectwhich of combinationsof MR&H
to enableby selectingwhich aspectsof a programminglan-
guage(conditionals,labeledprocedures,and iterative loops)
are available to the representation[11]. To compare the
different metricsof complexity we perform runs with them
on differentsizesof a scalabledesignproblem.

A. TestProblem

For the experiments in this paper the design problem
we use is that of producinga 3D table out of cubes,for
which the �tness function for scoring tables is a function
of their height, surface structure,stability and number of
excesscubesused[10]. Height is thenumberof cubesabove
the ground.Surfacestructureis the numberof cubesat the
maximumheight.Stability is a functionof thevolumeof the
tableandis calculatedby summingthe areaat eachlayer of
the table.Maximizing height,surfacestructureandstability
typically resultsin tabledesignsthat aresolid volumes,thus
a measureof excesscubesis usedto rewarddesignsthatuse
fewer bricks,

f heig ht = the heightof the highestcube,Ymax :

f sur f ace = the numberof cubesat Ymax :

f stabil ity =
YmaxX

y=0

f ar ea(y)

f ar ea(y) = areain the convex hull at heighty.

f excess = numberof cubesnot on the surface.

To producea single �tness score for a design these � ve
criteria arecombinedtogether:

�tness = f heig ht � f sur f ace � f stabil ity =f excess (1)

This problemcanbe scaledby varying the sizeof the grid.
In our experimentswe do runswith sizesfrom 20� 20� 20
to 80� 80� 80.

The design constructorfor making table designsstarts
with a singlecubein an otherwiseempty3D grid and then
executesthe assemblyprocedurethat was producedfrom
compiling thegenotype.Cubesareaddedto this designwith
the operatorsforward() andbackward() . The current
state,consistingof location and orientation, is maintained
with theadditionof cubesresultingin a changein thecurrent

location and the rotate-xyz() operatorschange the
currentorientation.A branchingin the assemblyprocedure
resultsin a split in theconstructionprocesswith construction
continuingwith eachchild subtreeworkingwith its own copy
of the constructionstate.

B. Representation

In the following examplewe demonstratethe representa-
tion and methodfor creatinga designas well as calculate
its complexity scoresusingthe differentcomplexity metrics.
This example designencodingconsistsof a starting com-
mand,Proc0(4.0,2.0),andtwo labeledprocedures,Proc 0
andProc 1, eachwith two parameters:

Pr oc 0(4:0; 2:0) :

Pr oc 0(n0; n1) :
n0 > 3:0 ! rotate-z(1) [Proc0(1.0,2.0) re-

peat(2)[forward(n1/2) [repeat-end
[Proc1(n0+2.0,2.0)[forward(1)]
] [] []]]]

tr ue ! rotate-z(1) [repeat(4) [rotate-
y(1) [forward(n1+1.0) repeat-end[
rotate-x(1)]]] []]

Pr oc 1(n0; n1) :
n0 > 1:0 ! forward(2) [Proc1(1.0,n1+1.0)

[forward(1)] rotate-y(2) [[]
Proc1(1.0,n1+1.0) [forward(1)]]
Proc1(n0-2.0,n1-1.0) [end-proc]
]

n0 > 0:0 ! rotate-y(1)[[] backward(n1) [end-
proc []]]

A graphical version of this design program is shown in
Figure1.

To generate the assembly procedure for this design
program it is executed, starting with the statement
Proc 0(4.0,2.0) . This results in the following
assemblyprocedure:
rotate-z(1) [rotate-z(1) [rotate-y(1)
[forward(3) rotate-y(1) [forward(3)
rotate-y(1) [forward(3) rotate-y(1)
[forward(3) rotate-x(1)]]]] []]
forward(1) [forward(1) [forward(2) [
rotate-y(1) [[] backward(3) [forward(1)
[]]] rotate-y(2) [[] rotate-y(1) [
[] backward(3) [forward(1) []]]]
forward(2) [rotate-y(1) [[] backward(2)
[forward(1) []]] rotate-y(2) [[]
rotate-y(1) [[] backward(2) [forward(1)
[]]]] forward(2) [rotate-y(1) [[]
backward(1) [forward(1) []]] rotate-
y(2) [[] rotate-y(1) [[] backward(1) [
forward(1) []]]] forward(1)]]] []
[]] [] []]]

Fig. 2. The3D objectthatis constructedfrom theexampledesignencoding.

This example designcan be analyzedusing the metrics
of MRHand the variouscomplexity measures.The program
hassix modulesthat are useda total of 17 times giving a
modularity value of 6 for the encodingand a modularity
value of 17 for the design.The size of the programis 30
symbolsand the size of the �nal assemblyprocedureis 38
symbolsgiving a reusevalue of 1.27, and it has� ve levels
of nestedmoduleswhich gives it a hierarchy valueof 5. Its
scoreson the othercomplexity measuresare:an AIC of 30;
a Designsizeof 38; a Logical Depthof 124;a Sophistication
of 21; 13 build symbols;a grammarsizeof 2; a connectivity
of 5; 8 branches;anda heightof 10.

C. EvolutionaryAlgorithm

The EA used for the experiments is the Age-Layered
PopulationStructure(ALPS) [13]. Unlike a traditional EA,
ALPS maintainsseveral layersof individualsof differentage
levels andcontinuouslyintroducesnew, randomlygenerated
individuals into the �rst layer. It has beenshown to work
better than the canonicalEA by better avoiding premature
convergence.The setupwe useconsistsof 10 layers,each
with 40 individuals.In eachlayer thebest2 individualsfrom
the previous generationarecopiedto the currentgeneration
and then new individuals are createdwith a 40% chance
of mutationand60% chanceof recombination.Tournament
selectionwith a tournamentsizeof 5 is usedto selectparents.
In our experimentswe run 15 trials with eachcon�guration
andeachtrial is run for onemillion evaluations.

VI . EMPIRICAL COMPARISON

To comparecomplexity andMRHmetricswe rana number
of experimentson different sizesof a designproblem.The
designproblemandevolutionaryalgorithmweredescribedin
theprevioussection,andfor theseexperimentsweperformed
four setsof experimentsin which we evolved tablesfor four
differentgrid sizes.Hereweareworkingwith theassumption
that a more “complex” design is neededto producegood
designsfor a larger designspaceandso we are looking for
complexity metrics whosevaluesscalesimilarly to design
size.

Figure 3 containsimagesof two of the best and most
structurallyorganizedtablesthat wereevolved. The smaller

(a) (b)

Fig. 3. Two of the best,and most structurallyorganized,of the evolved
tables.The ®rst (a) wasevolved in the 20 � 20 � 20 designspaceandthe
second(b) wasevolved in the 80 � 80 � 80 designspace.

TABLE I

A COMPARISON OF THE RESULTING SCORES ON THE DIFFERENT

METRICS OF THE BEST TABLES EVOLVED WITH THE DIFFERENT

REPRESENTATIONS. RESULTS ARE THE AVERAGE OVER 15 TRIALS.

203 403 603 803

Fitness(� 106) 0.56 18.1 123 440
AIC 719 768 680 775

DesignSize 6769 9499 9739 9944
Log. Depth 9541 13421 14376 18011

Sophistication 79.9 70.53 74.0 85.4
Bld Sym 626 684 593 676

GrammarSize 13.5 13.2 12.5 13.5
Connectivity 33.7 25.2 26.4 37.3

Branches 1653 2087 1905 1825
Height 118 145 276 220

Modularity (Mp) 27.5 26.1 30.8 31.1
Mod. in Design(Md) 377 547 1133 1329

Reuse(Ra) 12.1 14.0 16.6 15.7
Reuseof Bld. (Rb) 15.2 16.2 19.6 18.5

Reuseof Mod. (Rm) 15.2 21.8 37.4 50.1
Hierarchy (H) 7.53 7.7 8.0 8.6

table,Figure 3(a), was evolved in the 20 � 20 � 20 design
spaceandhasa �tness of 582221andthe following scores:
AIC of 913; DesignSizeof 8007;Logical Depthof 10311;
Sophisticationof 89; 811 build symbols;a GrammarSize
of 13; a Connectivity of 34; 1595branches;anda heightof
155. Its MRHscoresare: Mp is 34, Md is 431; Ra is 8.8; Rb

is 9.9; Rm is 12.7 and it has an H of 8. The larger table,
Figure 3(b), was evolved in the 80 � 80 � 80 designspace
and has a �tness of 600324286and the following scores:
AIC of 630; DesignSizeof 9753;Logical Depthof 14365;
Sophisticationof 90; 529 build symbols;a GrammarSize
of 11; a Connectivity of 58; 1668branches;anda heightof
168. Its MRHscoresare: Mp is 20, Md is 2202; Ra is 15.5;
Rb is 18.4; Rm is 110.1 and it hasan H of 9. While these
scoresgive examplesof the differencesthat can happen,a
betteroverall picture is gainedfrom looking at the average
scoresfrom a numberof evolutionaryrunson differentsizes
of the designproblem.

Table I lists the average values over 15 trials of the
different measuresas applied to the best tables evolved
on different sizes of the design problem (20 � 20 � 20,
40� 40� 40, 60� 60� 60, and80� 80� 80). As expected,
the averagedbest�tness monotonicallyincreasesalongwith

(a)

(b)

Fig. 4. A graphicalrenditionof the assemblyproceduresfor constructingthe two tablesin Figure3.

an increasein sizeof the designspace.The measureswhich
have valuesthat alsomonotonicallyincreasein stepwith an
increasein sizeof thedesignspaceare:DesignSize,Logical
Depth, Md, Rm , and H. Of these it is not surprising that
DesignSizeincreaseswith the sizeof the designspaceand,
given that the DesignSizeincreases,it is alsonot surprising
that Logical Depth (a measureof the running time of the
programthat createsthe assemblyprocedure)also increases
with size of the designspace.Interestingly, the information
in a design,AIC, does not grow monotonicallywith size
of the design spaceor Design Size. In addition, none of
the othermeasuresgrows monotonicallywith the sizeof the
designspaceexcept someof the measuresof structureand
organization:the amountof modularity in the design(Md),
the reuseof modules(Rm) andhierarchy (H).

Of the three measuresof reuse,Ra , Rb and Rm , only
modular reuse(Rm) monotonically increaseswith the size
of the designspaceandthe �tness of the bestdesigns.This
suggeststhat the type of reusethat is useful is not overall
reuse(Ra) or reuseof build symbols(Rb), but the reuseof
modules.By extension,this also suggeststhat thosedesign
representationswhichdonothave theability to hierarchically
assembleandreusemoduleswill not scalewell.

Of the two modularity measuresMd monotonically in-
creasedalong with the increasein �tness and size of the
designspacewhereasMp was higher in the 20 � 20 � 20
spacethanin the 40� 40� 40 space.SinceMd is a product
of the numberof modulesin a designprogram(M) and the
amountof reuseof thesemodules(Rm) it may be a more
reliablemeasureof “complexity” becauseit is a combination
of two separateaspects:modularity and a modular reuse.
This suggeststhat measuringmodularityaloneis not a good
overall measureof the complexity of an object and that
combiningthemeasuresof all threecharacteristicsof MR&H

into a single measuremay result in an even bettermeasure
of an object's structureandorganization.

VI I . MEASURES OF STRUCTURE AND ORGANIZATION

Each of the proposedmetrics of modularity, reuseand
hierarchy measuredifferent aspectsof the structure and
organization of an object. Of interest is combining the
scoresof thesethree metrics into a measureof structure
and organization with a single value, for which there are
various methodsof doing this. One methodfor combining
thethreescoresof MRHinto a singlevalueis by treatingeach
of themastheorthogonalaxesof a 3D systemandthenusing
the length of the vector from the origin as the measureof
structureand organizationof an object. Since the measure
of modular reuseworked well on its own, we also include
a variantof this measureof structureandorganizationusing
modularreuseinsteadof overall reuse.

SO1 =
p

M 2 + R2
a + H 2 (2)

SO2 =
p

M 2 + R2
m + H 2 (3)

A problem with this approachis that the different metrics
vary in their range,and a small changein hierarchy will
generally have little impact on the overall structure and
organization measureof an object since hierarchy usually
hasthe smallestvalue.

Anothermethodfor combiningthe threeMRHscoresis to
simply multiply themtogether.

SO3 = M � Ra � H (4)

SO4 = M � Rm � H (5)

This approachhas the desirableproperty that a changeof
X % in any oneof MRHwill result in the sameX % change
in the overall measureof structureandorganization,

TABLE II

DIFFERENT WAYS OF COMBINING MRHSCORES TO PRODUCE A SINGLE

MEASURE OF STRUCTURE AND ORGANIZATION.

203 403 603 803

Fitness(� 106) 0.56 18.1 123 440

SO1 : � � � !MRa H 31.3 31.1 37.1 37.1

SO2 : � � � !MRm H 34.0 36.0 51.6 64.4
SO3 : M� Ra � H 2013 2872 3708 4019
SO4 : M� Rm � H 2889 4324 8643 11207

SO5 : M� Ra � H
AssemS iz e 0.31 0.31 0.38 0.40

SO6 : M� Rm � H
AssemS iz e 0.42 0.46 0.89 1.13

SO7 : M� Ra � H / AIC 3.22 4.68 6.75 6.77
SO8 : M� Rm � H / AIC 4.59 6.87 15.4 19.3

Of concernwith the initial approachesto measuringstruc-
ture andorganizationare that they do not take into account
either the sizeof the objector the amountof informationin
it. For example,a large object with a small percentageof
its information organizedinto somestructurecan outscore
a much smaller object which has a small, maximally-
organized,designprogram.Two waysto normalizestructure
andorganizationscoresfor sizeare to divide by the sizeof
the objectandto divide by the amountof informationin the
object.

SO5 =
M � Ra � H
DesignSize

(6)

SO6 =
M � Rm � H
DesignSize

(7)

SO7 =
M � Ra � H

AI C
(8)

SO8 =
M � Rm � H

AI C
(9)

TableVII containsthe scoresfor thesedifferentmeasures
of structureand organization(SO) on the bestdesignpro-
gramsevolved for differentsizesof the designproblem.Of
theseeight measuresof structureand organization,neither
SO1 and SO5, both of which use overall reuseand not
modular reuse,increasemonotonicallyalong with the size
of the design space.The other six measuresof structure
and organizationdo increasemonotonically, with the four
measuresof structureand organizationwhich use modular
reuse(Rm), insteadof overall reuse,scaling in a way that
bettermatchesthe increasein designspaceandthe increase
in �tness.

VI I I . COMPARING MEASURES ON EXAMPLES

Oneshortcomingwith somemeasuresof complexity, such
as AIC, is that they are not very intuitive. We can examine
how intuitive thesemeasuresof structureand organization
areby trying themon a coupleof examples.First, consider
the AIC of an algorithmically randombit string, by which
is meantone with no regularities.Since the string has no
regularities it cannotbe compressed,so its AIC is the size
of the string plus the overheadnecessaryfor the print
operator. Comparethis to the MRHandstructureandorgani-
zation valuesof this string: its modularity value is 0, since

it has no modules,its reusevalue is 1, since there are no
reusedsymbols,andits hierarchy valueis 0, sincethereis no
modulesto benested.Usingthesevalues,its variousstructure
andorganizationvalues(SO1 . . .SO8) are:1, 1, 0, 0, 0, 0, 0,
and0. Thesevaluesof 0 and1 for the measuresof MRHand
structureandorganizationmatchour intuition that a random
string doesnot have a sophisticatedstructure.

Next, considerwhat happensto the structureand orga-
nization values when an object, A1, is joined to itself to
form a new object, A2. In this casethe designprogramof
the new object, A2, would be the sameas for the original
object, plus the module, A2 = A1 + A1. As a result of
this new module,the hierarchy of A2 would be H(A1) plus
1 and the modularity would be Mp(A1) plus 1. Depending
on the AIC of A1, the amount of reuse will be up to
a factor of 2 larger for the new object since R(A2) =
D S(A 1)+ D S(A 1)+ k

AI C (A 1) , where k is the size of adding the new
moduleandDS(A) is the DesignSizeof A. As a resultof
thesechangesin MRH, the structureandorganizationvalues
of SO5 throughSO8 shouldbeonly slightly larger, but those
of SO3(A2) and SO4(A2) will be roughly double that of
A1. Considerwhat happensto other scoresof complexity:
AIC, SophisticationandGrammarSize increaseslightly but
Logical Depth doubles.SinceA2 is just two copiesof A1,
it is not clear that it should have twice the complexity of
A1, thusmeasuresSO5 throughSO8 aremoreintuitive than
SO3(A2), SO4(A2) and logical depthon this example.

Similarly, consider the case in which two completely
differentobjects,A1 andA3, with the samecomplexity and
MRHscores,arecombinedto form a new object,A4: A4 =
A1 + A3. In this casethenew moduleresultsin thehierarchy
of thenew objectbeingoneplusthehierarchy of eitherof its
componentobjects:H(A4) = H(A1) + 1 = H(A3) + 1. The
modularity of this new object is equal to one plus the sum
of its to componentobjects:M(A4) = Mp(A1) + Mp(A3) + 1.
Whereasboth modularity and hierarchy increase,this new
object hasa reuseslightly less than both of its component
objectssincethesizeof thephenotypeis DS(O1)+ DS(O3)
but the size of the genotypeis AI C(O1) + AI C(O3) plus
some additional symbols for specifying A4 = A1 + A3.1

Thus SO3 and SO4 would be (roughly) double in value
for A4 as they are for A1 and A2, but SO5 through SO8

would changelittle since both AIC and designsize would
also(roughly)doublein size.Not only would AIC for A4 be
roughlydoublethatof eitherA1 or A3, but sowould Logical
Depth,Sophistication,andGrammarSize.Justascombining
an object with itself doesnot seemlike it should lead to a
doublingin complexity, neitherdoesit seemthat combining
two completelydifferent objectswith the samecomplexity
should lead to a doubling of complexity. Thus,as with the
previous example,we �nd that the more intuitive measures
areSO5 throughSO8.

1To be precise,the designprogramsfor both A 1 andA 3 have a starting
rule,oneof theseis keptandis changedto call thenew rule,A 4 = A 1 + A 3 ,
and the otherstartingrule is deletedso the AIC of A 4 is only a coupleof
symbolslarger thanAI C(A 1) + AI C(A 3).

To summarizethe resultsof thesethreeexampleswe can
statesomedesirablepropertiesof a measureof complexity:

1: The complexity value of a random string should be
small.

2: Thecomplexity valueof anobjectjoinedto itself should
be only slightly larger than that of the original object.

3: The complexity value of two objects joined together
shouldnot be smaller than the lesservalue of the two
original objectsandshouldnot be muchlarger thanthe
greatervalueof the two original objects.

Using theseprinciples,andthe resultsof the experimentsin
SectionVI, the best measuresof complexity are SO6 and
SO8.

IX. CONCLUSION

Necessaryfor the advancementof scalableevolutionary
systemsis the identi�cation of the fundamentalpropertiesof
such systemsand metrics for measuringthem. As yet, the
only clear metrics to come from the �eld of Evolutionary
Computationaremeasuresof modularity, reuseandhierarchy
(MRH). Here we comparedthe MRHmeasuresto various
measuresof complexity from other �elds with the goal of
identifying which onesbest scalewith what we intuitively
think of as complexity. In addition, we proposedvarious
measuresof structure and organization by combining the
measuresof MRHin variousways.

Working with the hypothesisthat by scaling the size of
a problem,more “complex” solutionsare requiredto solve
it, we comparedall measuresboth empirically, as well as
against the other complexity measureson measurethree
exampleobjects.All of theothercomplexity measureseither
failedto scalecorrectlyin our empiricalcomparison,or gave
unintuitive resultsfor at leastoneof our exampleobjects.Of
the measureswe proposed,two of our measuresof structure
andorganizationpassedall of the testsandso we conclude
that the best measuresof complexity are SO6 and SO8,
which are the productof multiplying the MR&H measures
together, and then normalizing by either dividing by AIC
(SO6) or by dividing by the designsize (SO8).

To summarize,while theamountof informationin adesign
is certainly an important factor for measuringcomplexity,
AIC producesunintuitive scoresfor variousexamples.Sim-
ilarly, the other measuresof complexity (Logical Depth,
Sophistication,. . .) all fail to passat leastone of our three
proposedproperties of a complexity measure.That two
measuresof structureand organization passthe empirical
experimentsand also correspondwell with what we intu-
itively think of as complex indicatesthat it is not so much
the amountof information that is important in determining
complexity, ratherit is how this informationis structuredand
organized.

REFERENCES

[1] P. J. Angeline. Morphogenicevolutionarycomputations:Introduction,
issuesandexamples.In J. McDonnell,B. Reynolds,andD. Fogel,ed-
itors, Proc. of theFourth AnnualConf. on EvolutionaryProgramming,
pages387±401.MIT Press,1995.

[2] C. H. Bennett. On the natureand origin of complexity in discrete,
homogenous,locally-interacting systems. Foundationsof Physics,
16:585±592,1986.

[3] P. Bentley andS. Kumar. Threewaysto grow designs:A comparison
of embryogeniesof an evolutionary designproblem. In W. Banzhaf,
J.Daida,A. E. Eiben,M. H. Garzon,V. Honavar, M. Jakiela,andR. E.
Smith, editors, Genetic and Evolutionary ComputationConference,
pages35±43.Morgan Kaufmann,1999.

[4] P. J. Bentley, editor. Evolutionary Design by Computers. Morgan
Kaufmann,SanFrancisco,1999.

[5] P. J.Bentley andD. W. Corne,editors.CreativeEvolutionarySystems.
Morgan Kaufmann,SanFrancisco,2001.

[6] G. J. Chaitin. On the lengthof programsfor computing®nite binary
sequences. Journal of the Associationof Computing Machinery,
13:547±569,1966.

[7] B. Edmunds.SyntacticMeasuresof Complexity. PhD thesis,Dept.of
Philosophy, University of Manchester, 1999.

[8] M. Goldwasser, J. Latombe,and R. Motwani. Complexity measures
for assemblysequences.In Proc. IEEE Intl. Conf. on Roboticsand
Automation, pages1581±1587,Minneapolis,MN, Apr. 1996.

[9] J.H. Holland.Adaptationin Natural andArti�cial Systems. University
of Michigan Press,Ann Arbor, 1975.

[10] G. Hornby. Functionalscalability throughgenerative representations:
theevolution of tabledesigns.EnvironmentandPlanningB: Planning
and Design, 31(4):569±587,July 2004.

[11] G. S. Hornby. Generative Representationsfor Evolutionary Design
Automation. PhD thesis, Michtom School of Computer Science,
BrandeisUniversity, Waltham,MA, 2003.

[12] G. S. Hornby. Measuring, enabling and comparing modularity,
regularity and hierarchy in evolutionary design. In H.-G. B. et al.,
editor, Proc.of theGeneticandEvolutionaryComputationConference,
GECCO-2005, pages1729±1736,New York, NY, 2005.ACM Press.

[13] G. S. Hornby. ALPS: The age-layeredpopulation structure for
reducing the problem of prematureconvergence. In M. K. et al.,
editor, Proc.of theGeneticandEvolutionaryComputationConference,
GECCO-2006, pages815±822,New York, NY, 2006.ACM Press.

[14] A. N. Kolmogorov. Threeapproachesto the quantitative de®nitionof
information. Problemsof InformationTransmission, 1:1±17,1965.

[15] M. Komosinskiand A. Rotaru-Varga. Comparisonof differentgeno-
type encodingsfor simulated3d agents.Arti�cial Life, 7(4):395±418,
2001.

[16] M. Koppel. Complexity, depthand sophistication.Complex Systems,
1:1087±1091,1987.

[17] J. R. Koza. GeneticProgramming:on the programmingof computers
by meansof natural selection. MIT Press,Cambridge,MA, 1992.

[18] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag,1990.

[19] B. K. Rosen.Syntacticcomplexity. InformationandControl, 24:305±
335, 1974.

[20] H. A. Simon. The Sciencesof the Arti�cial . MIT Press,Cambridge,
MA, 1969.

[21] R. J. Solomonoff. A formal theoryof inductive inference.Information
and Control, 7:1±22,224±254,1964.

[22] K. O. Stanley and R. Miikkulainen. A taxonomy for arti®cial
embryogeny. Arti�cial Life, 9(2):93±130,2003.

[23] V. H. Yngve. A model and an hypothesisfor languagestructure. In
Proceedingsof the AmericanPhilosophicalSociety, pages444±466,
1960.

